
CASE STUDIES IN TRAJECTORY OPTIMIZATION: TRAINS, PLANES, AND OTHER
PASTIMES

ROBERT J. VANDERBEI

Operations Research and Financial Engineering
Princeton University

ORFE-00-3

Revised August 23, 2000

ABSTRACT. This is the first in a series of papers presenting case studies in modern large-scale constrained
optimization, the purpose of which is to illustrate how recent advances in algorithms and modeling languages
have made it easy to solve difficult optimization problems using off-the-shelf software. In this first paper, we
consider four trajectory optimization problems: (a) how to operate a train efficiently, (b) how to putt a golf
ball on an uneven green so that it arrives at the cup with minimal speed, (c) how to fly a hang glider so as
to maximize or minimize the range of the glide, and (d) how to design a slide to make a toboggan go from
beginning to end as quickly as possible.

In addition to the tutorial aspects of this paper, we also present evidence suggesting that the widely used
trapezoidal discretization method is inferior in several ways to the simpler midpoint discretization method.

1. INTRODUCTION

This is the first in a series of papers presenting case studies in constrained optimization. The purpose of
these studies is to illustrate how recent advances in algorithms and modeling languages now make it easy
to solve once difficult optimization problems using off-the-shelve software. A secondary goal is to show
that it is nonetheless still possible to make subtle errors in a model which will render it (a) more difficult
than it needs to be or (b) infeasible or, worse, (c) feasible but giving the wrong answer. In the past, many
of the optimization problems we present here were thought to be very difficult to solve and it was unclear
whether failures were due to bad algorithms or bad models. Today, one can say that failures are almost
always due to bad models.

Date: August 23, 2000.
1991Mathematics Subject Classification.Primary 65L10 Secondary 34B15.
Key words and phrases.trajectory optimization, optimal control, constrained optimization.
Research supported by NSF grant DMS-9870317, ONR grant N00014-98-1-0036.

1

2 VANDERBEI

In this paper we consider trajectory optimization problems. Our first example is about how to drive a
train so as to minimize fuel costs. We follow this with two examples from the world of sports: golfing
and flying. Subsequent papers in this series will treat applications in electrical engineering (filter and
antennae-array design) and in civil engineering (topology optimization of structures).

Throughout the paper we present several optimization models. We express these models in theAMPL

modeling language [10]. This language provides a common mechanism for conveying problems to codes
to solve them. When solving problems we generally use two different solvers: (a)LOQO [18, 19, 20, 2],
which implements an interior-point method for general nonlinear optimization and (b)SNOPT[11], which
implements an active set strategy with a quasi-Newton method for the QP subproblem.

This paper is intended to be a tutorial on trajectory optimization. We direct the interested reader to John
Betts’ book [4] for a much more in depth treatment.

2. TRAINS

An important problem in transportation is to minimize fuel costs in the operation of a train. To keep
things simple, we consider a segment of track that is straight although it may contain hills and valleys. Let
x denote position along the track measured from some fixed reference point. Lettingv denote the deriv-
ative of position with respect to time anda the time-derivative ofv, we arrive at the following equations
describing the motion of the train:

v = ẋ

a = v̇

a = h(x)− (a + b|v|+ cv2) + ua − ub.(1)

Here,h(x) represents the acceleration/deceleration caused by going down/up hills,a, b, andc are constants
so that the three termsa + b|v|+ cv2 represent friction (both from the track and from the surrounding air),
ua represents the acceleration provided by the engines, andub represents the deceleration from applying
the brakes. The control variables are the functionsua andub. The objective is to take the train from one
place given by initial condition

x(0) = x0

v(0) = v0

to another given by

x(T) = xf

v(T) = vf

in such a way as to minimize fuel costs, which we take to be proportional to the total amount of work
done: ∫ T

0

ua(t)v(t)dt.

To get a specific instance of this problem, we take the initial position to be zero, the final position to be
6.0 km, the initial and final velocities to be zero, the total trip time to be 4.8 minutes and

a = 0.3, b = 0.14, c = 0.16.

TRAINS, PLANES, AND OTHER PASTIMES 3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6

"train_g"

FIGURE 1. The acceleration profile caused by hills. The first two miles are uphill, then
there are two miles of flat, and the last two miles are downhill.

Finally, the hill functionh is taken to be

h(x) =
m−1∑
j=1

(sj+1 − sj)
1

π
tan−1 x− zj

ε

wherem represents the number of hill sections,sj is the slope along thej-th section,zj is the breakpoint
between thej-th and thej + 1-st section, andε gives a spread which is related to the length of the train
itself. Our specific choice involves an initial uphill climb followed by a level section and then a final
downhill run. Hence, it hasm = 3 and

z1 = 2, z2 = 4,

s1 = 2, s2 = 0, s3 = −2.

A plot of h is shown in Figure 1.

2.1. Midpoint Discretization Method. This problem can be cast as a (nonconvex) nonlinear optimiza-
tion problem by discretizing the time interval[0, T] into N small time intervals and writing discrete ap-
proximations for the derivatives that appear in the model. There are many ways to do this. In this paper,
we discuss two popular discretizations: midpoint discretization and trapezoidal discretization. We begin
with the midpoint method. Lettingx[j] denote the value ofx at timejT/N , j=0,1,...,N , we define
a discrete approximation to the velocity at the midpoint of each time interval as follows:

v[j+0.5] = (x[j+1]-x[j])/(T/N) j=0,1,...,N-1,

The discrete approximation for acceleration is defined similarly:

a[j] = (vx[j+0.5]-vx[j-0.5])/(T/N) j=1,...,N-1,

This approximation is calledmidpoint discretization. The equations of motion given by (1) can then be
written as:

a[j] = h(x[j]) - (a+b*v[j]+c*v[j]ˆ2) + u_a[j] - u_b[j] .

4 VANDERBEI

param N := 201;
param time := 4.8;
param length := 6.0;
param ns := 3;
param z{1..ns-1};
param s{1..ns};
param h := time/N;
param uamax := 10.0;
param ubmax := 2.0;
param aa:= 0.3;
param bb := 0.14;
param cc := 0.16;
param eps := 0.05;
param pi := 4*atan(1);

var x{0..N};
var v{i in 0..N-1} = (x[i+1]-x[i])/h;
var v_avg{i in 1..N-1}

= (v[i]+v[i-1])/2;
var a{i in 1..N-1} = (v[i]-v[i-1])/h;
var ua{1..N-1} >=0.0, <=uamax, :=0.0;
var ub{1..N-1} >=0.0, <=ubmax, :=0.0;
var u {i in 1..N-1} = ua[i]-ub[i];

minimize energy:
sum {i in 1..N-1} ua[i]*v_avg[i]*h;

s.t. newton {i in 1..N-1}:
h*a[i] =
h*
(

- sum {j in 1..ns-1}
(s[j+1]-s[j])*

atan((x[i]-z[j])/eps)/pi
- aa - bb*v_avg[i] - cc*v_avg[i]ˆ2
+ u[i]

);

s.t. x_init: x[0] = 0;
s.t. x_finl: x[N] = length;
s.t. v_init: v[0] = 0;
s.t. v_finl: v[N-1] = 0;

data;
param z := 1 2.0 2 4.0;
param s := 1 2.0 2 0.0 3 -2.0;

solve;

printf {i in 0..N}: "%10f %10f \n",
i*h, x[i] > train_x;

printf {i in 1..N-1}: "%10f %10f \n",
i*h, u[i] > train_a;

printf {i in 0..N-1}: "%10f %10f \n",
i*h, v[i] > train_v;

FIGURE 2. TheAMPL modeltrainh.mod .

Of course, velocities are defined at the half-integer points yet we access values here at the whole integer
points. Hence, it is necessary to provide reasonable values for velocities at these integer points; we use the
average of the two nearest half-integer values. The complete model expressing the midpoint discretization
in theAMPL modeling language is shown in Figure 2.

2.2. Ringing. A graph showingx, v, anda as functions of time is shown in Figure 3. Note the “ringing”
phenomenom apparent in the acceleration during times of medium acceleration. Such a phenomenon
suggests that something is wrong. To test whether it is a bug in the optimization algorithm, we solved the
problem with two completely different solvers:LOQO andSNOPT. Both solvers produced similar ringing.
We conclude that ringing is intrinsic to the model. Next, we refined the discretization toN = 501 and
solved the problem again. This time,LOQO and SNOPT both exhibited ringing but it was much more
pronounced inLOQO. The objective functions matched out to the 8 digits of accuracy requested by the
two solvers. (For those who like to keep score,LOQO solves theN=501 problem in 6.86 seconds and
SNOPTrequires 35.71 seconds to solve the problem.)

Reflection sheds some light on what is happening. With a highly refined partition, a control scheme that
alternates between two values becomes indistinguishable from one that applies the average of the two all

TRAINS, PLANES, AND OTHER PASTIMES 5

-2

0

2

4

6

8

10

0 1 2 3 4 5

x
v
a

FIGURE 3. Output produced withN = 201.

the time. Imagine riding in a car with someone who pumps the gas pedal. The speed remains essentially
constant and the rate of consumption of fuel is just the average of the pumped and unpumped rates. Hence,
other than making passengers sick (I’ve been there), this control is just as good as a smooth one.

This reasoning suggests that the set of near optimal solutions is large. Sometimes interior-point methods
get into trouble in such cases. In fact, trouble is assured if the set of optimal solutions is unbounded. For
the train problem, settingN=1001 LOQO finds a solution that is accurate only to 3 digits whereasSNOPT

still can get 8 digits (although it takes a long time). Larger values ofN cause even more trouble. Clearly
ringing is bad for interior-point methods.

2.3. Smoothing. The model can be improved by adding to the objective some measure of the work of
“pumping the pedal”. For example, after adding a tiny correction

0.00000001*sum {i in 1..N-2} (u[i+1] - u[i])ˆ2/h

to the objective function in the model shown in Figure 2,LOQO has no trouble solving theN=1001 case
and gets an answer that exhibits no ringing whatsoever. The solution to theN=2001 case is shown in
Figure 4.

Rather than the first-order smoothness condition given above, one could use a second-order smoothness
condition:

0.0000000001*sum {i in 2..N-2} (u[i+1]+u[i-1]-2*u[i])ˆ2/hˆ3

LOQO is also able to solve this variant. The solution is shown in Figure 5. It is very similar to the previous
smoothed solution, which gives us confidence that we are finding the correct answer to the problem.

6 VANDERBEI

-2

0

2

4

6

8

10

0 1 2 3 4 5

x
v
a

FIGURE 4. LOQO output produced withN = 2001.

-2

0

2

4

6

8

10

0 1 2 3 4 5

x
v
a

FIGURE 5. LOQO output produced withN = 2001.

TRAINS, PLANES, AND OTHER PASTIMES 7

We end here our discussion of ringing by remarking that this phenomenon is common; it has nothing to
do with the shape of the hills/valleys or with the initial and final conditions. In fact, one can see ringing
even in the case where the entire track is level (i.e.,h ≡ 0) and the initial and final velocities are both equal
to the total distance divided by the total time. In this case, the optimal control should be static. That is, one
should provide just the amount of acceleration needed to maintain the initial speed throughout the trip.
But, without the smoothing terms mentioned above, bothLOQO and SNOPT find nonstatic ringing-type
solutions.

2.4. Trapezoidal Discretization. We end this section with a description of the second common method
for discretizing first-order differential equations. This method is called thetrapezoidal discretization.
With this discretization, values forv anda are defined at the same discrete times as forx ; that is, atjT/N ,
j=0,1,...,N . Instead of giving a formula defining each velocity in terms of a difference of positions,
we give constraints that say that the average value of the values ofv at two adjacent times is equal to the
appropriate difference in the positional values:

(v[j+1]+v[j])/2 = (x[j+1]-x[j])/(T/N) j=0,1,...,N-1,

Constraints that must be satisfied by the accelerations are similar:

(a[j+1]+a[j])/2 = (v[j+1]-v[j])/(T/N) j=0,1,...,N-1,

The model in its entirety is shown in Figure 6. Generally speaking trapezoidal discretizations are more
popular than their midpoint counterparts, but there are drawbacks.

First of all, for the train models that we are considering the midpoint method is less affected by the
ringing phenomenon. This is seen from the fact that the1.0e-8 factor used in the midpoint method has
to be increased to1.0e-6 in the trapezoidal method beforeLOQO can solve the model. Furthermore,
even with this larger smoothing factor, the midpoint model solves in 83 iterations whereas the trapezoidal
model requires 187.

The second disadvantage to using trapezoidal discretizations involves the minimal number of vari-
ables/constraints needed to express the model. The variables representing derivatives (v and a in the
model in question) must be explicitly represented in the model and are determined only indirectly via the
constraints they must satisfy. With the midpoint discretization there is more flexibility. These variables
can be treated in the same explicit way, i.e., represented explicitly and then defined via constraints. But,
they can also be given simply as “abbreviations” for their explicit formulas in terms of the undifferentiated
variables (i.e., position) and then never be seen by the optimization algorithm. The model shown in Figure
2 uses this latter approach. It results in many fewer variables and constraints. While reducing the number
of variables and/or constraints in a large-scale sparse optimization problem does not always mean faster
solution times, it often does and that is the case here. ForN=2001, the midpoint model has 5998 vari-
ables, 2000 constraints, and solves in 86 seconds (using 83 iterations of the basic algorithm). On the other
hand, the trapezoidal model has 10006 variables, 6004 constraints, and solves in 355 seconds (using 187
iterations). More iterations are needed because, as stated earlier, this method suffers more from ringing
but even on a per iteration basis the midpoint model solves twice as fast.

The trapezoidal discretization of the train model that we’ve studied here derives from the modeltrainh
in theCUTE [7] suite on test problems. TheCUTE model was itself adapted from a paper by Kautsky and
Nichols [13].

8 VANDERBEI

param N := 2001;
param time := 4.8;
param length := 6.0;
param ns := 3;
param z{1..ns-1} ;
param s{1..ns} ;
param h := time/N;
param uamax := 10.0;
param ubmax := 2.0;
param aa:= 0.3;
param bb := 0.14;
param cc := 0.16;
param eps := 0.05;
param pi := 4*atan(1);

var x{0..N};
var v{0..N};
var a{0..N};
var ua{0..N} >= 0.0, <= uamax, := 0.0;
var ub{0..N} >= 0.0, <= ubmax, := 0.0;
var u {i in 0..N} = ua[i] - ub[i];

minimize energy:
sum {i in 0..N} ua[i]*v[i]*h
+ 0.000001*sum {i in 0..N-1}

(u[i+1] - u[i])ˆ2/h;

s.t. v_def {i in 0..N-1}:
(v[i+1]+v[i])/2 = (x[i+1]-x[i])/h;

s.t. a_def {i in 0..N-1}:
(a[i+1]+a[i])/2 = (v[i+1]-v[i])/h;

s.t. newton {i in 0..N}:
h*a[i] =
h*
(
- sum {j in 1..ns-1}

(s[j+1]-s[j])*atan((x[i]-
z[j])/eps)/pi

- aa - bb*v[i] - cc*v[i]ˆ2
+ u[i]
);

s.t. x_init: x[0] = 0;
s.t. x_finl: x[N] = length;
s.t. v_init: v[0] = 0;
s.t. v_finl: v[N] = 0;

data;
param z := 1 2.0 2 4.0;
param s := 1 2.0 2 0.0 3 -2.0;

solve;

printf {i in 0..N}: "%10f %10f \n",
i*h, x[i] > train_x;

printf {i in 0..N}: "%10f %10f \n",
i*h, v[i] > train_v;

printf {i in 0..N}: "%10f %10f \n",
i*h, u[i] > train_a;

FIGURE 6. TheAMPL modeltrainh trap.mod illustrating the trapezoidal discretization.

2.5. Lessons.After studying hundreds of nonlinear optimization problems, we have learned many lessons
about how to formulate models appropriately and what type of algorithm will solve these problems effi-
ciently and robustly. While a single example is not sufficient for deducing these lessons, it can be used to
illustrate them. The lessons illustrated by the train problem can be summarized as follows:

(1) Discrete approximations to continuous problems can exhibit unexpected pathological behaviour
such as the ringing we saw here.

(2) Optimization problems with large sets of optimal (or nearly optimal) solutions can present numer-
ical difficulties for interior-point methods.

(3) Interior-point methods are often more efficient than active-set methods on large problems.

TRAINS, PLANES, AND OTHER PASTIMES 9

(4) Midpoint discretizations have fewer degrees of freedom than trapezoidal discretizations and there-
fore are less likely to exhibit ringing.

(5) With midpoint discretization one can eliminate the higher-order derivatives from the optimization
model producing a reduced model that may solve more efficiently than the expanded version.

3. PUTTING

The problem of how to putt provides a simple framework to continue our discussion of trajectory op-
timization. One of the lessons to be learned with this example is how easy it is to make a wrong model.
With this in mind, we advise the interested golfer to read the entire section because the first model, right
as it may appear, is wrong.

3.1. The Alessandrini Model. We begin with a discussion of the problem essentially as it appears in [1].
Given a golf ball sitting at rest on a putting green, the problem is to figure out how to hit the ball so

that it will go into the cup. To make sure that it does not just skim over the cup and stop at some point far
beyond, we try to have the ball arrive at the cup with the smallest speed possible.

The Normal Vector.We assume that the elevation of the green is given as(x, y, z(x, y)) and that its
shape is given by(x/a)2 + (y/b)2 ≤ 1. Two tangent vectors to the surface are provided by(1, 0, ∂z/∂x)
and(0, 1, ∂z/∂y). By taking the cross product of these two vectors, we obtain an upward pointing normal
vector to the surface:

(−∂z/∂x,−∂z/∂y, 1).

The normal forceN exerted by the surface of the green on the golf ball must point in this direction and
its magnitude must be such that the total force in this direction vanishes (to keep the ball rolling on the
surface).

The Normal Force.Since the only forces that are not tangential to the green are the force of gravity
and the normal force itself, we must have the projection of the force of gravity on the normal direction be
exactly opposite to the magnitude of the normal force:

−mg(ez ·N)/‖N‖ = −‖N‖,

wherem is mass of the ball,g is acceleration due to gravity,ez is the unit vector pointing in the vertical
direction, and of courseN is proportional to the normal vector given above. From this relation, we get
that

Nz =
mg

(∂z/∂x)2 + (∂z/∂y)2 + 1

and that

Nx = −∂z/∂xNz Ny = −∂z/∂yNz.

Friction. There is friction between the ball and the green. It is assumed to be proportional to the normal
force and to point in a direction opposite to the velocity:

F = −µ‖N‖ v

‖v‖
.

10 VANDERBEI

Equations of Motion.If we denote the trajectory byu(t) = (x(t), y(t), z(t)), then the equations of
motion are

v = u̇

a = v̇

ma = N + F −mgez.(2)

Boundary Conditions.The initial and final positions are known,

u(0) = u0 and u(T) = uf ,

but the timeT at which the final position is reached is a variable.
As with the train example, this problem can be cast as a (nonconvex) nonlinear optimization problem

using either a midpoint or a trapezoidal discretization rule. Inspired by our lesson from the previous
example indicating some advantages to the midpoint rule, we start with this method. We discuss the
trapzoidal rule at the end of this section.

Using the midpoint rule, we can letx[j] , y[j] , andz[j] denote the positional coordinates at time
jT/N , j=0,1,...,N , and then define discrete approximations to the three components of velocity at
the midpoint of each time interval as follows:

vx[j+0.5] = (x[j+1]-x[j])/(T/N) j=0,1,...,N-1,
vy[j+0.5] = (y[j+1]-y[j])/(T/N) j=0,1,...,N-1,
vz[j+0.5] = (z[j+1]-z[j])/(T/N) j=0,1,...,N-1.

Discrete approximations for acceleration are defined similarly:
ax[j] = (vx[j+0.5]-vx[j-0.5])/(T/N) j=1,...,N-1,
ay[j] = (vy[j+0.5]-vy[j-0.5])/(T/N) j=1,...,N-1,
az[j] = (vz[j+0.5]-vz[j-0.5])/(T/N) j=1,...,N-1.

The equations of motion given by (2) complete the constraints defining the model:
ax[j] = (Nx[j] + Fr_x[j])/m,
ay[j] = (Ny[j] + Fr_y[j])/m,
az[j] = (Nz[j] + Fr_z[j])/m - g.

Here,Nx[j] , Ny[j] , andNz[j] are shorthand for
Nz[j] = m*g/(dzdx[j]ˆ2 + dzdy[j]ˆ2 + 1),
Nx[j] = -dzdx[j]*Nz[j],
Ny[j] = -dzdy[j]*Nz[j]

and Fr x[j] , Fr y[j] , andFr x[j] are shorthand for the three components of friction along the
trajectory. Our first ampl model for this problem is shown in Figure 7. In this particular instance the shape
of the green involves two rather flat, but slightly sloped, sections with a smooth ramp between them. The
ball is initially on the lower section and the cup is on the higher section, a difficult putt similar to the
one Tiger Woods faced on the 18th hole in the final round of the 2000 PGA Championship. The function
z(x, y) we use to define this ramp is

z(x, y) = −0.3 arctan(y) + 0.05(x + y).

TRAINS, PLANES, AND OTHER PASTIMES 11

param g := 9.8; # acc due to gravity
param m := 0.01; # mass of a golf ball
param x0 := 1; # coords of start pt
param y0 := 2;
param xn := 1; # coords of ending pt
param yn := -2;
param n := 50; # num of time points
param mu;

var T >= 0; # total time for the putt
var x{0..n}; # coords of the traj
var y{0..n};

var z {i in 0..n}
= -0.3*atan(y[i]) + 0.05*(x[i]+y[i]);

var dzdx{i in 0..n}
= 0.05;

var dzdy{i in 0..n}
= -0.3/(1+y[i]ˆ2) + 0.05;;

v[i] denotes the deriv at midpt of
the interval i(T/n) to (i+1)(T/n).
var vx{i in 0..n-1} = (x[i+1]-x[i])*n/T;
var vy{i in 0..n-1} = (y[i+1]-y[i])*n/T;
var vz{i in 0..n-1} = (z[i+1]-z[i])*n/T;

a[i] denotes the accel at midpt of
the interval (i-0.5)(T/n)
to (i+0.5)(T/n), i.e. at i(T/n).
var ax{i in 1..n-1} = (vx[i]-vx[i-1])*n/T;
var ay{i in 1..n-1} = (vy[i]-vy[i-1])*n/T;
var az{i in 1..n-1} = (vz[i]-vz[i-1])*n/T;

var Nz{i in 1..n-1}
= m*g/(dzdx[i]ˆ2 + dzdy[i]ˆ2 + 1);

var Nx{i in 1..n-1} = -dzdx[i]*Nz[i];
var Ny{i in 1..n-1} = -dzdy[i]*Nz[i];
var Nmag{i in 1..n-1}

= m*g/sqrt(dzdx[i]ˆ2 + dzdy[i]ˆ2 + 1);

var vx_avg{i in 1..n-1}
= (vx[i]+vx[i-1])/2;

var vy_avg{i in 1..n-1}
= (vy[i]+vy[i-1])/2;

var vz_avg{i in 1..n-1}
= (vz[i]+vz[i-1])/2;

var speed{i in 1..n-1}
= sqrt(vx_avg[i]ˆ2 + vy_avg[i]ˆ2

+ vz_avg[i]ˆ2);

var Frx{i in 1..n-1}
= -mu*Nmag[i]*vx_avg[i]/speed[i];

var Fry{i in 1..n-1}
= -mu*Nmag[i]*vy_avg[i]/speed[i];

var Frz{i in 1..n-1}
= -mu*Nmag[i]*vz_avg[i]/speed[i];

minimize finalspeed:
vx[n-1]ˆ2 + vy[n-1]ˆ2;

s.t. newt_x {i in 1..n-1}:
ax[i] = (Nx[i] + Frx[i])/m;

s.t. newt_y {i in 1..n-1}:
ay[i] = (Ny[i] + Fry[i])/m;

s.t. newt_z {i in 1..n-1}:
az[i] = (Nz[i] + Frz[i] - m*g)/m;

s.t. xinit: x[0] = x0;
s.t. yinit: y[0] = y0;
s.t. zinit: z[0]

= -0.3*atan(y[0]) + 0.05*(x[0]+y[0]);

s.t. xfinal: x[n] = xn;
s.t. yfinal: y[n] = yn;
s.t. zfinal: z[n]

= -0.3*atan(y[n]) + 0.05*(x[n]+y[n]);

s.t. onthegreen {i in 0..n}:
x[i]ˆ2 + y[i]ˆ2 <= 16;

let T := 1.5;

let mu := 0.07;
let {i in 0..n}

y[i] := (i/n)*yn + (1-i/n)*y0;
let {i in 0..n}

x[i] := y[i]ˆ2/2;

solve;

FIGURE 7. A first AMPL model for the putting problem.

NeitherLOQO nor SNOPTwas able to solve the model shown in Figure 7. When this happens, it is natural
to suspect that the problem is infeasible. Why should the model in Figure 7 be infeasible? Alessandrini
was able to solve supposedly the same model (using a different elevation function for the green). We tried
several different surfaces and they all fail with all codesexceptwhen the surface is planar (including tilted

12 VANDERBEI

FIGURE 8. Two views of the trajectory obtained from the model in Figure 7 with the
elevation constraint removed.Note: For the online version of this paper, click on the figure
to start a 3-D animation. In the animation, click on the flag to start the ball rolling.

planar surfaces). Every optimizer we tried is able to solve such planar problems easily. This proved to be
a good hint that something is wrong with the model.

After much pondering, it occured to us thatz is being specified in two ways—once as an explicit
function of x andy and a second time as the solution to a differential equation. Since the differential
equation is computed by a somewhat crude discretization, it is entirely possible that the two specifications
are enough different from each other to render the model infeasible. So, we tried two things:

(1) Removing from the model the explicit statement of howz depends onx andy . That is, we changed
var z {i in 0..n} = -0.3*atan(y[i]) + 0.05*(x[i]+y[i]);

to just
var z {i in 0..n};

(This, we later learned, is how Alessandrini formulated the problem.)
(2) Removing from the model the part of the differential equation that relates to thez component of

the trajectory. That is, we removed the constraintsnewt z , zinit , andzfinal .
The first of these changes produces a model that solves easily while the second one appears still to be
infeasible. Hence, we seem to be on to something but more errors may be lurking. The trajectory found
with the elevation constraint removed is shown in Figure 8. This trajectory looks almost right except that
it seems to go airborne in the early part of the trajectory and then tunnel into the grass in the final stages.
The ball is clearly not staying on the green but instead is flying through the air to the cup. This indicates
that our differential equation forz is wrong. And, if it is wrong, then the equations forx andy ought to be
wrong as well.

But what is wrong? The derivation was straightforward—how could it possibly be wrong?

3.2. The Correct Putting Model. The key to understanding what is wrong with our implementation of
the Alessandrini model is contained in the observation that the model in Figure 7 is solvable when and
only when the surface of the green is planar. This suggests that the derivation is only valid for that case.

http://www.princeton.edu/~rvdb/tex/trajopt/putt/puttwrong.wrl

TRAINS, PLANES, AND OTHER PASTIMES 13

What is different when the surface is not planar? Well, if you drive a car over the crest of a hill you feel
lighter than normal (pun intended), whereas if you speed through a valley you feel heavier. The weight
that one feels is the magnitude of the normal force. Hence, this normal force is not constant when the
surface has hills and valleys. As you go through a valley, the normal force must be greater than nominal
in order to accelerate you along the arc defining the upward bending curve.

From this discussion, it is easy now to see that the magnitude of the normal force must be such that it
compensates both for the pull of gravity and for the out-of-tangent-plane acceleration along the path:

‖N‖ = mg
ez ·N
‖N‖

+ m
a(t) ·N
‖N‖

.

From this relation we can deduce that

Nz = m
g − ax(t)

∂z
∂x
− ay(t)

∂z
∂y

+ az(t)

(∂z/∂x)2 + (∂z/∂y)2 + 1
.

Everything else in the previous derivation remains the same.
The complete correct model is shown in Figure 9. As shown in Figure 10, this trajectory does follow

the surface correctly (as it must given the model).

3.3. Trapezoidal Discretization. The trapezoidal discretization for the correct formulation of the putting
problem is shown in Figure 11. BothSNOPTandLOQO solve this formulation of the problem but each takes
about twice as long as when solving the corresponding midpoint discretization formulation. Furthermore,
LOQO requires a slight relaxation in the stopping criteria (the infeasibility tolerance needs to be increased
from its default of10−6 to 2× 10−5).

The fact thatLOQO requires a relaxation in the stopping rule suggests that something might be wrong
with the model. John Betts [4] seems to have identified the issue. He points out that the speed of the
ball as it arrives at the cup is zero and hence there is a singularity in the differential equation at the final
time. Of course, a numerical approximation might never experience the singularity exactly but it still can
feel the effect. For the problem at hand, at the optimal solutionLOQO hasspeed[n] = 2.6e-6 and
SNOPThasspeed[n] = 1.7e-6 . These values are not zero but they are getting close and one could
imagine that numerical issues related to the singularity of the differential equation are beginning to enter
in here. To test this, we changed the optimization objective from minimizing the final speed to minimizing
the deviation of the final speed from some small prescribed value. In particular, we tried(vx[n]ˆ2 +
vy[n]ˆ2 - 0.25)ˆ2 . With this objective function, both solvers are able to find a solution in a much
more robust fashion (i.e., using fewer iterations and being successful over a wider range of choice of some
of the other parameters in the problem). Our local golf expert (aka John Mulvey) indicates that this is
the objective function used by real golfers anyway. He says that a real golfer does not want the ball to
arrive at the cup with too little speed because then small imperfections in the green can have rather large
unpredictable effects in those last few inches near the cup.

It is interesting to note that the midpoint rule is “less” bothered by the singularity issue. The reason is
that the final speed in that model is the average final speed over the last time interval. This number is small
but not as small as the final speed in the trapezoidal rule. For example,LOQO gets a final speed of7e-3
with this discretization, which is a few orders of magnitude larger than it got with the trapezoidal rule.

14 VANDERBEI

param g := 9.8; # acc due to gravity
param m := 0.01; # mass of a golf ball
param x0 := 1; # coords of start pt
param y0 := 2;
param xn := 1; # coords of ending pt
param yn := -2;
param n := 50; # num of time points
param mu;

var T >= 0; # total time for the putt
var x{0..n}; # coords of the traj
var y{0..n};

var z {i in 0..n}
= -0.3*atan(y[i]) + 0.05*(x[i]+y[i]);

var dzdx{i in 0..n}
= 0.05;

var dzdy{i in 0..n}
= -0.3/(1+y[i]ˆ2) + 0.05;;

v[i] denotes the deriv at midpt of
the interval i(T/n) to (i+1)(T/n).
var vx{i in 0..n-1} = (x[i+1]-x[i])*n/T;
var vy{i in 0..n-1} = (y[i+1]-y[i])*n/T;
var vz{i in 0..n-1} = (z[i+1]-z[i])*n/T;

a[i] denotes the accel at the midpt of
the interval (i-0.5)(T/n)
to (i+0.5)(T/n), i.e. at i(T/n).
var ax{i in 1..n-1} = (vx[i]-vx[i-1])*n/T;
var ay{i in 1..n-1} = (vy[i]-vy[i-1])*n/T;
var az{i in 1..n-1} = (vz[i]-vz[i-1])*n/T;

var Nz{i in 1..n-1}
= m*

(g-ax[i]*dzdx[i]-ay[i]*dzdy[i]+az[i])
/(dzdx[i]ˆ2 + dzdy[i]ˆ2 + 1);

var Nx{i in 1..n-1} = -dzdx[i]*Nz[i];
var Ny{i in 1..n-1} = -dzdy[i]*Nz[i];
var Nmag{i in 1..n-1}

= m*
(g-ax[i]*dzdx[i]-ay[i]*dzdy[i]+az[i])
/sqrt(dzdx[i]ˆ2 + dzdy[i]ˆ2 + 1);

var vx_avg{i in 1..n-1}
= (vx[i]+vx[i-1])/2;

var vy_avg{i in 1..n-1}
= (vy[i]+vy[i-1])/2;

var vz_avg{i in 1..n-1}
= (vz[i]+vz[i-1])/2;

var speed{i in 1..n-1}
= sqrt(vx_avg[i]ˆ2 + vy_avg[i]ˆ2

+ vz_avg[i]ˆ2);

var Frx{i in 1..n-1}
= -mu*Nmag[i]*vx_avg[i]/speed[i];

var Fry{i in 1..n-1}
= -mu*Nmag[i]*vy_avg[i]/speed[i];

var Frz{i in 1..n-1}
= -mu*Nmag[i]*vz_avg[i]/speed[i];

minimize finalspeed:
vx[n-1]ˆ2 + vy[n-1]ˆ2;

s.t. newt_x {i in 1..n-1}:
ax[i] = (Nx[i] + Frx[i])/m;

s.t. newt_y {i in 1..n-1}:
ay[i] = (Ny[i] + Fry[i])/m;

s.t. xinit: x[0] = x0;
s.t. yinit: y[0] = y0;

s.t. xfinal: x[n] = xn;
s.t. yfinal: y[n] = yn;

s.t. onthegreen {i in 0..n}:
x[i]ˆ2 + y[i]ˆ2 <= 16;

let T := 1.5;

let mu := 0.07;
let {i in 0..n} y[i] := (i/n)*yn + (1-
i/n)*y0;
let {i in 0..n} x[i] := y[i]ˆ2/2;

solve;

FIGURE 9. A second, and this time correct,AMPL model for the putting problem.

3.4. Lessons.
(1) It is deceptively easy to formulate a problem incorrectly.
(2) Incorrect formulations are surprisingly likely to be infeasible.
(3) Infeasibility is especially hard for nonlinear solvers to detect reliably.
(4) In the early days of optimization, a nonconvex problem with 10 or more variables was considered

exceedingly hard to solve. In its most compact form, the problem here only really has 2 decision
variables: thex andy components of the initial velocity vector that the putter imparts to the golf

TRAINS, PLANES, AND OTHER PASTIMES 15

FIGURE 10. Two views of the trajectory from the correct model shown in Figure 9. Note
how the trajectory follows the contour of the green.

ball. After giving the ball its initial kick, the rest is determined by physics. One could formulate
the problem this way. There would be just two decision variables and there would be a fairly
complicated integrator function that would determine if the trajectory actually arrives at the hole
and, if it does, the speed at which it arrives there. Using this integrator function as a “black
box”, one could make an optimization problem with just two variables. However, with modern
optimization technology it is easy to incorporate the physics into the optimization model as we
have done here and get a much larger model but one that is not any more difficult to solve. In
fact, by expressing both the optimization part of the model and the physics in the same place and
using the same “language” provides a level of model control that was totally lacking before. For
example, if the physics is wrong, as it was in our first attempt, then the optimization problem
is likely to be infeasible. If the physics and the optimization are separated from each other it is
especially hard to identify what (or who!) is at fault. By having them together, it is easy to print
out variables, trajectories, dual variables, etc. and all of this information can be useful in figuring
out what is wrong with a model.

(5) It wasn’t mentioned in the discussion above, but one of the lessons in this example is how important
it is to give an initial solution that is close to the optimal solution. For example, the optimal value
of T is close to2 in the examples above. We initializedT to be1.5. Both LOQO andSNOPTfind
the right solution for any value ofT between1 and3 but outside this range the solvers start to get
into trouble. For example, neither of the solvers was able to solve the problem when initialized
with T = 5.

Finally, note that we contacted Stephen Alessandrini to ask him about his model. It turns out that when
he derived his equations he was thinking only about the planar case. It was only at the final stages of
writing that he added a nonplanar example. Interestingly, it was this last example that caught the eye of
others, see for example [4], and for a time the incorrect model propogated unchecked.

This problem is not purely an academic exercise. See [14] for a description of a system in which putting
trajectories were used for real-time animation during television coverage.

http://www.princeton.edu/~rvdb/tex/trajopt/putt/putt.wrl

16 VANDERBEI

param g := 9.8; # acc due to gravity
param m := 0.01; # mass of a golf ball
param x0 := 1; # coords of start pt
param y0 := 2;
param xn := 1; # coords of ending pt
param yn := -2;
param n := 50; # num of time points
param mu;

var T >= 0; # total time for the putt
var x{0..n}; # coords of the traj
var y{0..n};

var z {i in 0..n}
= -0.3*atan(y[i]) + 0.05*(x[i]+y[i]);

var dzdx{i in 0..n}
= 0.05;

var dzdy{i in 0..n}
= -0.3/(1+y[i]ˆ2) + 0.05;;

var vx{i in 0..n};
var vy{i in 0..n};
var vz{i in 0..n};

var ax{i in 0..n};
var ay{i in 0..n};
var az{i in 0..n};

var Nz{i in 0..n}
= m*

(g-ax[i]*dzdx[i]-ay[i]*dzdy[i]+az[i])
/(dzdx[i]ˆ2 + dzdy[i]ˆ2 + 1);

var Nx{i in 0..n} = -dzdx[i]*Nz[i];
var Ny{i in 0..n} = -dzdy[i]*Nz[i];
var Nmag{i in 0..n}

= m*
(g-ax[i]*dzdx[i]-ay[i]*dzdy[i]+az[i])
/sqrt(dzdx[i]ˆ2 + dzdy[i]ˆ2 + 1);

var speed{i in 0..n}
= sqrt(vx[i]ˆ2 + vy[i]ˆ2 + vz[i]ˆ2);

var Frx{i in 0..n}
= -mu*Nmag[i]*vx[i]/speed[i];

var Fry{i in 0..n}
= -mu*Nmag[i]*vy[i]/speed[i];

var Frz{i in 0..n}
= -mu*Nmag[i]*vz[i]/speed[i];

minimize finalspeed: vx[n]ˆ2 + vy[n]ˆ2;

s.t. vx_def {i in 1..n}:
(vx[i]+vx[i-1])/2=(x[i]-x[i-1])/(T/n);

s.t. vy_def {i in 1..n}:
(vy[i]+vy[i-1])/2=(y[i]-y[i-1])/(T/n);

s.t. vz_def {i in 1..n}:
(vz[i]+vz[i-1])/2=(z[i]-z[i-1])/(T/n);

s.t. ax_def {i in 1..n}:
(ax[i]+ax[i-1])/2=(vx[i]-vx[i-1])/(T/n);

s.t. ay_def {i in 1..n}:
(ay[i]+ay[i-1])/2=(vy[i]-vy[i-1])/(T/n);

s.t. az_def {i in 1..n}:
(az[i]+az[i-1])/2=(vz[i]-vz[i-1])/(T/n);

s.t. newt_x {i in 0..n}:
ax[i] = (Nx[i] + Frx[i])/m;

s.t. newt_y {i in 0..n}:
ay[i] = (Ny[i] + Fry[i])/m;

s.t. xinit: x[0] = x0;
s.t. yinit: y[0] = y0;
s.t. xfinal: x[n] = xn;
s.t. yfinal: y[n] = yn;

s.t. onthegreen {i in 0..n}:
x[i]ˆ2 + y[i]ˆ2 <= 16;

let T := 1.5;

let {i in 0..n}
x[i] := (i/n)*xn + (1-i/n)*x0;

let {i in 0..n}
y[i] := (i/n)*yn + (1-i/n)*y0;

let {i in 0..n} vx[i] := (xn-x0)/T;
let {i in 0..n} vy[i] := (yn-y0)/T;

let mu := 0.07;

solve;

FIGURE 11. The correct putting model with a trapezoidal discretization. Note how posi-
tions, velocities, and accelerations are all defined over the same index set.

TRAINS, PLANES, AND OTHER PASTIMES 17

4. HANG GLIDING

The problem we now consider is to compute the flight inputs to a hang glider so as to provide a maximum
range flight. The specific problem we shall analyze is taken from [9].

One should note that the model presented here also applies to the flight of an airplane with its engines
off (only the data are different). In this case, maximizing the range could be a life-saving endeavor.

The hang glider (with pilot) is pulled down by the force of gravity associated with its massm, has a
lifting forceL acting perpendicular to its velocity relative to the air, and a drag forceD acting in a direction
opposite to the relative velocity. Denote byx the horizontal position of the glider, byvx the horizontal
component of the absolute velocity, byy the vertical position, and byvy the vertical component of absolute
velocity.

Recall that one of the lessons of the previous section is the importance of scrutinizing every model
carefully looking for errors. With that in mind and with our apologies for not practicing what we preach,
we ask the reader to trust us as we assert that the following description of the equations of motion for a
hang glider is correct.

4.1. Stable Airmass. The equations of motion for a glider in a stable airmass are as follows:

vx = ẋ, ax = v̇x, ax = 1
m

(−Lvy

vr
−D vx

vr
),

vy = ẏ, ay = v̇y, ay = 1
m

(Lvx

vr
−D vy

vr
)− g

with

vr =
√

v2
x + v2

y , L =
1

2
cLρSv2

r , and D =
1

2
cD(cL)ρSv2

r .

In [9], it is assumed that there was an updraft 250 meters into the flight. To keep the situation simple,
we start by assuming that the air is still. In the next subsection, we shall consider updrafts and more
complicated situations.

The glider is controlled by the lift coefficientcL (the pilot pushes or pulls on the control bar to change
cL). The drag coefficientcD is assumed to depend on the lift coefficient as

cD(cL) = c0 + kc2
L

wherec0 andk are fixed parameters,c0 = 0.034 andk = 0.069662 being realistic values (and the ones
used in [9]). In addition, there are limits on the lift coefficient:

0 ≤ cL ≤ cL max := 1.4

(corresponding to the control bar being pulled in all the way and pushed out all the way, respectively). The
other constants in the problem have the following specific values:

m = 100 mass of glider and pilot
S = 14 wing area
ρ = 1.13 air density
g = 9.81 acc due to gravity.

18 VANDERBEI

The boundary conditions are:

x(0) = 0,
y(0) = 1000, y(T) = 900,

vx(0) = 13.23, vx(T) = 13.23,
vy(0) = −1.288, vy(T) = −1.288.

The total timeT for the flight is, of course, a variable. The objective is to maximizex(T).
With a stable airmass, one expects that, for appropriate choice of boundary conditions, the optimal

control will be static. The optimal static control is found by minimizing the ratio of drag to lift (or,
equivalently, maximizingL/D):

D/L =
c0

cL

+ kcL.

The minimum occurs atcL =
√

c0/k = 0.69862. Then using the fact that accelerations in a static solution
vanish, we deduce that

−vx

vy

=
L

D
= 10.274

vr =

√
2mg

ρS
√

c2
D + c2

L

= 13.2901.

From this we quickly compute that

vx = 13.23, vy = −1.288.

That is, the initial and final velocities given above in the boundary conditions for the dynamic version of
the problem match the optimal values for the static version of the problem. Hence, we expect the optimal
solution of the dynamic problem to be in fact static. Let’s see if this is what we get.

The AMPL model for the midpoint discretization is shown in Figure 12. With this discretization, we
have the following variables

T, x{0,..,N}, y{0,..,N}, cL{1,..,N-1}

and the following equality constraints

newt_x{i in 1..N-1}, newt_y{i in 1..N-1},
x_ic, y_ic, vx_ic, vy_ic,
y_fc, vx_fc, vy_fc.

Hence, with this formulation the problem involves3N+2 variables and2N+5 equality constraints leav-
ing N-3 degrees of freedom over which we optimize. UsingN=150, LOQO solves this problem in 45
interior-point iterations (4.57 seconds on a 366 MHz PC). At optimality we havex[N]=1027.383 and
T=77.6699 . The control input as a function of time turns out to be constant as we hoped.

Now, let’s consider a trapezoidal discretization. TheAMPL model is shown in Figure 13. In this case,
we have the following variables:

TRAINS, PLANES, AND OTHER PASTIMES 19

param N;

param x_0; param y_0;
param vx_0; param vy_0;
param x_n; param y_n;
param vx_n; param vy_n;
param cL_0;
param cL_n;

param cL_min; param cL_max;
param c0; param k;
param S; param rho;

param m; param g; param W := m*g;

var T >= 0;

State Variables
var x {i in 0..N};
var y {i in 0..N};

Control variables
var cL {i in 1..N-1} >= cL_min, <= cL_max;

Abbreviations
var vx {i in 0..N-1} = N*(x[i+1]-x[i])/T;
var vy {i in 0..N-1} = N*(y[i+1]-y[i])/T;
var ax {i in 1..N-1} = N*(vx[i]-vx[i-1])/T;
var ay {i in 1..N-1} = N*(vy[i]-vy[i-1])/T;
var cD {i in 1..N-1} = c0+k*cL[i]ˆ2;
var Vx {i in 1..N-1} = (vx[i]+vx[i-1])/2;
var Vy {i in 1..N-1} = (vy[i]+vy[i-1])/2;
var vr {i in 1..N-1}

= sqrt(((vx[i]+vx[i-1])/2)ˆ2
+ Vy[i]ˆ2);

var D {i in 1..N-1}
= .5*cD[i]*rho*S*vr[i]ˆ2;

var L {i in 1..N-1}
= .5*cL[i]*rho*S*vr[i]ˆ2;

var sin_eta {i in 1..N-1} = Vy[i]/vr[i];
var cos_eta {i in 1..N-1} = Vx[i]/vr[i];

maximize final_x: x[N];

s.t. newt_x{i in 1..N-1}:
ax[i] = (-L[i]*sin_eta[i]

- D[i]*cos_eta[i])/m;
s.t. newt_y{i in 1..N-1}:

ay[i] = (L[i]*cos_eta[i]
- D[i]*sin_eta[i] - W)/m;

s.t. novomit_x {i in 1..N-1}:
-3 <= ax[i] <= 3;

s.t. novomit_y {i in 1..N-1}:
-3 <= ay[i] <= 3;

Boundary Conditions
s.t. x_ic : x[0] = x_0;
s.t. y_ic : y[0] = y_0;
s.t. vx_ic: vx[0] = vx_0;
s.t. vy_ic: vy[0] = vy_0;

s.t. y_fc : y[N] = y_n;
s.t. vx_fc: vx[N-1] = vx_n;
s.t. vy_fc: vy[N-1] = vy_n;

Data which needs to be reinitialized

data;

param N := 150;
param x_0 := 0; param y_0 := 1000;
param vx_0 := 13.23; param vy_0 := -1.29;

param y_n := 900;
param vx_n := 13.23; param vy_n := -1.29;

param cL_min := 0; param cL_max := 1.4;
param c0 := 0.034; param k := 0.069662;
param S := 14; param rho := 1.13;

param m := 100; param g := 9.80665;

initial guess
let {j in 0..N} x[j] := 5000*j/N;
let {j in 0..N} y[j] := -100*j/N+1000;
let {j in 1..N-1} cL[j] := .7;
let T := 30;

solve;

FIGURE 12. The hang-glider range-maximization model using a midpoint discretization.

T, x{0,..,N}, y{0,..,N}, vx{0,..,N}, vy{0,..,N}, cL{0,..,N}

20 VANDERBEI

param N;

param x_0; param y_0;
param vx_0; param vy_0;
param x_n; param y_n;
param vx_n; param vy_n;
param cL_0; param cL_n;

param cL_min; param cL_max;
param c0; param k;
param S; param rho;

param m; param g; param W := m*g;

var T >= 10, <= 200;

State Variables
var x {i in 0..N};
var y {i in 0..N};
var vx {i in 0..N} <= 30, >= -30;
var vy {i in 0..N} <= 30, >= -30;

Control variables
var cL {i in 0..N} >= cL_min, <= cL_max;

Abbreviations
var cD {i in 0..N} = c0+k*cL[i]ˆ2;
var vr {i in 0..N} = sqrt(vx[i]ˆ2 + vy[i]ˆ2);
var D {i in 0..N} = .5*cD[i]*rho*S*vr[i]ˆ2;
var L {i in 0..N} = .5*cL[i]*rho*S*vr[i]ˆ2;
var sin_eta {i in 0..N} = vy[i]/vr[i];
var cos_eta {i in 0..N} = vx[i]/vr[i];
var ax {i in 0..N} = (-L[i]*sin_eta[i]

- D[i]*cos_eta[i])/m;
var ay {i in 0..N} = (L[i]*cos_eta[i]

- D[i]*sin_eta[i]
- W)/m;

maximize final_x: x[N];

Trapezoidal Discretization
s.t. x_eqn {j in 1..N}:

(x[j]-x[j-1])/(T/N) = (vx[j]+vx[j-1])/2;

s.t. y_eqn {j in 1..N}:
(y[j]-y[j-1])/(T/N) = (vy[j]+vy[j-1])/2;

s.t. vx_eqn {j in 1..N}:
(vx[j]-vx[j-1])/(T/N)
= (ax[j]+ax[j-1])/2;

s.t. vy_eqn {j in 1..N}:
(vy[j]-vy[j-1])/(T/N)
= (ay[j]+ay[j-1])/2;

Boundary Conditions
s.t. x_ic : x[0] = x_0;
s.t. y_ic : y[0] = y_0;
s.t. vx_ic : vx[0] = vx_0;
s.t. vy_ic : vy[0] = vy_0;

s.t. y_fc : y[N] = y_n;
s.t. vx_fc1: vx[N] = vx_n;
s.t. vy_fc1: vy[N] = vy_n;

s.t. monotone_x {i in 1..N}:
x[i] >= x[i-1];

s.t. novomit_x {i in 0..N}:
-3 <= ax[i] <= 3;

s.t. novomit_y {i in 0..N}:
-3 <= ay[i] <= 3;

Data which needs to be reinitialized

data;

param N := 150;
param x_0 := 0; param y_0 := 1000;
param vx_0 := 13.23; param vy_0 := -1.29;

param y_n := 900;
param vx_n := 13.23; param vy_n := -1.29;

param cL_min := 0; param cL_max := 1.4;
param c0 := 0.034; param k := 0.069662;
param S := 14; param rho := 1.13;

param m := 100; param g := 9.80665;

initial guess
let {j in 0..N} x[j] := 5000*j/N;
let {j in 0..N} y[j] := -100*j/N+1000;
let {j in 0..N} vx[j] := 13.23;
let {j in 0..N} vy[j] := -1.29;
let {j in 0..N} cL[j] := 0.7;
let T := 30;

solve;

FIGURE 13. The hang-glider range-maximization model using a trapezoidal discretization.

TRAINS, PLANES, AND OTHER PASTIMES 21

and the following equality constraints for the discretized problem:

x_eqn {1..N}, y_eqn {1..N}, vx_eqn {1..N}, vy_eqn {1..N},
x_ic, y_ic, vx_ic, vy_ic, y_fc, vx_fc1, vy_fc1.

With this formulation, the problem involves5N+6 variables and4N+7 equality constraints leavingN-
1 degrees of freedom over which we optimize. This is 2 more than with the previous model. Using
N=150, LOQO solves this problem in 141 interior-point iterations (24.2 seconds on a 366 MHz PC). At
optimality we havex[N] = 1027.488 andT = 77.7241 . After flying more than a kilometer, this
optimal solution is better than the previous one by 10 centimeters. Perhaps this just reflects a difference
in the discretization or maybe it is really a different answer. To see which it is, let’s look at the control
input—Figure 15. From the control input we see that this solution is definitely not static. But it is also not
implementable as it is discontinuous att = 0 (followed by nontrivial control inputs for approximately the
first 9 seconds of the flight).

The discontinuity of the control input suggests that the model formulation, i.e. the discretization, has
too many degrees of freedom. To check this hypothesis, we tried introducingcontinuityconstraints. First
we added just one such constraint:

cL[0] = cL[1]

With this constraint, we got a solution that was closer to the static solution but was still not itself static.
So, we added a second continuity constraint:

cL[1] = cL[2]

With these two constraints, the model solves in 222 interior-point iterations (41.1 seconds on a 366 MHz
PC). At optimality we getx[N] = 1027.383 andT = 77.6699 in exact agreement with the static
solution. Furthermore, the optimal control is again static.

It is noteworthy that the “correct” number of degrees of freedom for the adjusted trapezoidal rule
matches the number of degrees of freedom from the midpoint rule. Clearly, something fundamental is
going on here.

4.2. Unstable Airmass. The original problem studied in [9] involved an updraft 250 meters into the
flight. The vertical velocity profile for this updraft is given by

ua(x) = ume−(x
R
−2.5)

2
(

1−
(x

R
− 2.5

)2
)

and is shown in Figure 14. To change the model to account for this unstable airmass profile, we simply
replace every occurance ofvy in the model withvy − ua(x). Both the midpoint discretization and the
trapezoidal discretization (with the twocL continuity constraints) are easy to solve. See Figures 16–21.

The trapezoidal discretization without the two extra continuity constraints exhibits the same anomolous
behaviour as was illustrated by the stable air example. This version of the model appears in the COPS
suite of problems [5]. The fact that is causes trouble for some solvers is documented in [6].

22 VANDERBEI

-0.5

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

2.5*exp(-(x/100-2.5)**2)*(1-(x/100-2.5)**2)

FIGURE 14. Updraft profile

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 10 20 30 40 50 60 70 80

"cL_vs_t"

FIGURE 15. Control input as a function of time. Trapezoidal discretization method.

TRAINS, PLANES, AND OTHER PASTIMES 23

900

920

940

960

980

1000

0 200 400 600 800 1000 1200 1400

"y_vs_x"

FIGURE 16. y vsx

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90 100

"x_vs_t"

FIGURE 17. x vs t

9
9.5
10

10.5
11

11.5
12

12.5
13

13.5
14

0 10 20 30 40 50 60 70 80 90 100

"vx_vs_t"

FIGURE 18. vx vs t

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 10 20 30 40 50 60 70 80 90 100

"cL_vs_t"

FIGURE 19. cL vs t

900

920

940

960

980

1000

0 10 20 30 40 50 60 70 80 90 100

"y_vs_t"

FIGURE 20. y vs t

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70 80 90 100

"vy_vs_t"

FIGURE 21. vy vs t

24 VANDERBEI

For more on optimal control of flight paths, we refer the reader to Stengel’s classic text [16] and to the
recent book by Bryson [8].

4.3. Lessons.In this section there are two lessons:

(1) Before solving a problem of interest, always test a model by first solving a problem whose solution
is mathematically tractible.

(2) The two discretization methods that we’ve discussed throughout this paper are commonly used for
simple numerical integration of ODEs. In this case, the problem is well-posed if the number of
equations matches the number of variables; i.e., there are no degrees of freedom. One can show that
a problem is well-posed with respect to midpoint discretization if and only if it is well-posed with
respect to trapezoidal discretization. However, as we saw in this example, for control problems,
i.e. problems where there are degrees of freedom, the midpoint discretization will sometimes
have fewer degrees of freedom than the trapezoidal discretization. It seems that the midpoint
discretization has the “correct” number and that the trapezoidal discretization has too many.

5. TOBOGGANING

It wouldn’t be right to end our discussion of trajectory optimization without discussing the famous
Brachistochrone problem. We do it here in this last section in the context of designing a slide which will
get the rider from the beginning to the end in the shortest amount of time.

We assume in this study that the slide will be constructed out of frictionless material. We letx denote,
as usual, horizontal displacement and we lety denote vertical displacement. In contrast with earlier
conventions, we assume thaty increases as one moves downward. The slide will connect two points
having coordinates(x0, y0) = (0, 0) and(xf , yf). The toboggan starts from rest at the top of the slide.
Hence, initially the toboggan has zero kinetic energy and zero potential energy (due to gravity). Since the
slide is frictionless, there is no loss of energy as heat. By conservation of energy, the total energy must
always remain zero. So, when the toboggan has dropped to levely, we have

1

2
mv2 −mgy = 0.

Here,v denotes the speed of the toboggan. From this relation we see that

v =
√

2gy.

Now, the time to do the run can be computed as an integral of differential chunks of time

T =

∫ T

0

dt =

∫ T

0

ds(t)

v(t)
.

This last integral can be reparametrized using any monotone function of time. The natural candidate is
horizontal displacementx. With this choice, we get

(3) T =

∫ xf

0

√
1 + y′(x)2√

2gy(x)
dx.

TRAINS, PLANES, AND OTHER PASTIMES 25

param n := 512;

param x {j in 0..n} := j/n;

Variables
var y {j in 0..n} >= 0;

Abbreviations
var dydx {j in 1..n}

= (y[j]-y[j-1])/(x[j]-x[j-1]);
var f {j in 1..n}

= sqrt((1+dydx[j]ˆ2)/y[j-1]);

minimize time:
sum {j in 1..n}

f[j]*(x[j]-x[j-1]) ;

subject to y0: y[0] = 1.0e-12;
subject to yn: y[n] = 1;

subject to monotone {j in 1..n}:
dydx[j] >= 0;

let {j in 0..n} y[j] := x[j];

solve;

FIGURE 22. A workingAMPL model for the Brachistochrone problem.

The problem then is to find a functiony(x) that minimizes this integral and satisfies the constraintsy(0) =
0 andy(xf) = yf . Using calculus of variations, one can show that the general form of the solution to (3)
is a cycloid:

x = k2(θ − sin θ)

y = k2(1− cos θ).

However, to find the values ofk and θf to satisfy the original terminal conditions involves solving a
transcendental equation—not such an easy task.

TheAMPL model expressing the minimization ofT as given in (3) is shown in Figure 22. It took some
tinkering before we were able to get to the working model shown in the Figure. The main issue is that
y(0) = 0 appears in the denominator of the integrand whenx = 0. Hence, the integral is a singular
integral. To address this, we first changed the boundary condition toy(0) = 10−12. Also, sincedydx[j]
appearing in the definition off[j] represents the value of the derivative at the midpoint of the interval
[j − 1, j], one would expect to use the best estimate fory at this same place, i.e.,(y[j]+y[j-1])/2 .
However, with this choice for denominator in the integrand, the optimal solution exhibits a very large
jump discontinuity atx = 0. Presumably this is caused by the singularity but the details elude us. Using
y[j-1] , as shown, works but changing it toy[j] renders the problem unsolvable to bothLOQO and
SNOPT. Again, the reason remains a mystery. It is easy to think of lots of other things to try (and we did)
but we stop here in favor of a different line of attack. The model shown in the Figure is solved byLOQO

in 26 iterations. It takes 0.85 seconds on a 366 MHz PC.
Instead of using horizontal displacement as the parameterization variable in (3), we could equally well

have chosen to use the vertical displacement variable. With this choice, we get

(4) T =

∫ yf

0

√
1 + x′(y)2

√
2gy

dy.

The AMPL model for this formulation of the problem is shown in Figure 23.LOQO solves this model in
just 10 iterations. It takes only 0.26 seconds on a 366 MHz PC. Clearly, from a numerical perspective, this
formulation is much better than the previous one.

26 VANDERBEI

param n := 512;

param y {j in 0..n} := (j/n);

Variables
var x {j in 0..n};

Abbreviations
var dxdy {j in 1..n}

= (x[j] - x[j-1])/(y[j] - y[j-1]);
var f {j in 1..n}

= sqrt((dxdy[j]ˆ2+1)/((y[j]+y[j-
1])/2));

minimize time:
sum {j in 1..n} f[j]*(y[j]-y[j-1]) ;

subject to x0: x[0] = 0;
subject to xn: x[n] = 1;

let {j in 0..n} x[j] := y[j];

solve;

FIGURE 23. A second workingAMPL model for the Brachistochrone problem.

5.1. Lesson. The lesson to take away from this case study is that one should consider a variety of ways
to formulate a given problem. Some might be much easier to solve than others.

6. FINAL REMARKS

We have considered four trajectory optimization problems. With these problems a number of issues
came up that needed to be resolved. It turns out that these same issues are common in trajectory optimiza-
tion problems. Hence, these examples serve as good prototypes for trajectory optimization in general.
However, the field of optimal control and its subfield of trajectory optimization are mature subjects. There
is a large body of definitions and theorems that it would be impossible to survey in a short paper such
as this. I have therefore tried to introduce only a few of the main concepts without feeling obligated to
provide anywhere near complete coverage. Readers interested in a full modern treatment of trajectory
optimization problems are refered to [4].

By the same token, optimization too is a well-established discipline. In this paper, I’ve treated opti-
mization as a black box—define a model and let a solver at it. Those interested in further details about the
optimization algorithms are refered to [3, 12, 15, 17, 21].

Acknowledgements.I would like to thank John Betts, Jorge More, and Stephen Alessandrini for several
lively discussions that altogether had a significant impact on this paper. I would also like to thank David
Gay and Philip Gill for their providing access and support forAMPL andSNOPT, respectively.

REFERENCES

[1] S.M. Alessandrini. A motivational example for the numerical solution of two-point boundary-value problems.SIAM Re-
view, 37(3):423–427, 1995. 9

[2] H.Y. Benson, D.F. Shanno, and R.J. Vanderbei. Interior-Point Methods for Nonconvex Nonlinear Programming: Jam-
ming and Comparative Numerical Testing. Technical Report ORFE-00-2, Dept. of Operations Research and Financial
Engineering, Princeton University, Princeton NJ, 2000. 2

http://www.sor.princeton.edu/~rvdb/ps/loqo3_3.pdf
http://www.sor.princeton.edu/~rvdb/ps/loqo3_3.pdf

TRAINS, PLANES, AND OTHER PASTIMES 27

[3] D.P. Bertsekas.Nonlinear Programming. Athena Scientific, Belmont MA, 1995. 26
[4] J.T. Betts.Practical Methods for Optimal Control using Nonlinear Programming. SIAM, Philadelphia, PA, 2000. 2, 13,

15, 26
[5] A.S. Bondarenko, D.M. Bortz, and J.J. Moré. COPS: Constrained optimization problems. http://www-

unix.mcs.anl.gov/ more/cops/. 21
[6] A.S. Bondarenko, D.M. Bortz, and J.J Moré. COPS: Large-scale nonlinearly constrained optimization problems. Technical

report, Technical Report ANL/MCS-TM-237, Mathematics and Computer Science Division, Argonne National Labora-
tory, Argonne IL, 1998. Revised Oct 1999. 21

[7] I. Bongartz, A.R. Conn, N. Gould, and Ph.L. Toint. Constrained and unconstrained testing environment.
http://www.cse.clrc.ac.uk/Activity/CUTE+74. 7

[8] A.E. Bryson.Dynamic Optimization. Addison Wesley Longman, Inc., Menlo Park, CA, 1999. 24
[9] R. Bulirsch, E. Nerz, H.J. Pesch, and O. von Stryk. Combining direct and indirect methods in optimal control: Range

maximization of a hang glider. In R. Bulirsch, A. Miele, J. Stoer, and K.H. Well, editors,”Optimal Control: Calculus of
Variations, Optimal Control Theory and Numerical Methods, pages 273–288. Birkhauser Verlag, Basel, Boston, Berlin,
1993. 17, 21

[10] R. Fourer, D.M. Gay, and B.W. Kernighan.AMPL: A Modeling Language for Mathematical Programming. Scientific
Press, 1993. 2

[11] P.E. Gill, W. Murray, and M.A. Saunders. User’s guide for SNOPT 5.3: A Fortran package for large-scale nonlinear
programming. Technical report, Systems Optimization Laboratory, Stanford University, Stanford, CA, 1997. 2

[12] P.E. Gill, W. Murray, and M.H. Wright.Numerical Linear Algebra and Optimization, volume 1. Addison-Wesley, Red-
wood City, CA, 1991. 26

[13] J. Kautsky and N.K. Nichols. OTEP-2: Optimal train energy programme, mark 2. Technical Report Numerical Analysis
Report NA/4/83, Dept. of Mathematics, University of Reading, 1983. 7

[14] W.E. Lorensen and B. Yamrom. Golf green visualization.IEEE Computer Graphics Appl., 12:35–44, 1992. 15
[15] S.G. Nash and A. Sofer.Linear and Nonlinear Programming. McGraw-Hill, New York, 1996. 26
[16] R.F. Stengel.Optimal Control and Estimation. Dover, Mineola, NY, 1994. 24
[17] T. Terlaky, editor.Interior point methods of mathematical programming. Kluwer Academic Publishers, Dordrecht and

Boston, 1996. 26
[18] R.J. Vanderbei. LOQO: An interior point code for quadratic programming.Optimization Methods and Software, 12:451–

484, 1999. 2
[19] R.J. Vanderbei. LOQO user’s manual—version 3.10.Optimization Methods and Software, 12:485–514, 1999. 2
[20] R.J. Vanderbei and D.F. Shanno. An interior-point algorithm for nonconvex nonlinear programming.Computational Op-

timization and Applications, 13:231–252, 1999. 2
[21] S.J. Wright.Primal-Dual Interior-Point Methods. SIAM, Philadelphia, USA, 1996. 26

ROBERT J. VANDERBEI, PRINCETON UNIVERSITY, PRINCETON, NJ

http://www-unix.mcs.anl.gov/~more/cops/
http://www-unix.mcs.anl.gov/~more/cops/
http://www-unix.mcs.anl.gov/~more/cops/
http://www.cse.clrc.ac.uk/Activity/CUTE+74

	1. Introduction
	2. Trains
	2.1. Midpoint Discretization Method
	2.2. Ringing
	2.3. Smoothing
	2.4. Trapezoidal Discretization
	2.5. Lessons

	3. Putting
	3.1. The Alessandrini Model
	3.2. The Correct Putting Model
	3.3. Trapezoidal Discretization
	3.4. Lessons

	4. Hang Gliding
	4.1. Stable Airmass
	4.2. Unstable Airmass
	4.3. Lessons

	5. Tobogganing
	5.1. Lesson

	6. Final Remarks
	References

